Fixed Point Algorithms for Estimating Power Means of Positive Definite Matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast algorithms for positive definite matrices structured by orthogonal polynomials

Positive definite matrices structured by orthogonal polynomial systems allow a Cholesky type decomposition of their inverse matrices in O(n2) steps. The algorithm presented in this paper uses the three-term recursion coefficients and the mixed moments of the involved polynomials.

متن کامل

Riemannian metrics on positive definite matrices related to means. II

On the manifold of positive definite matrices, a Riemannian metric Kφ is associated with a positive kernel function φ on (0,∞) × (0,∞) by defining K D(H,K) = ∑ i,j φ(λi, λj) TrPiHPjK, where D is a foot point with the spectral decomposition D = ∑ i λiPi and H,K are Hermitian matrices (tangent vectors). We are concerned with the case φ(x, y) = M(x, y)θ where M(x, y) is a mean of scalars x, y > 0....

متن کامل

Estimating Symmetric, Positive Definite Matrices in Robotic Control

In a number of contexts relevant to control problems, including estimation of robot dynamics, covariance, and smart structure mass and stiffness matrices, we need to solve an over-determined set of linear equations AX ≈ B with the constraint that the matrix X be symmetric and positive definite. In the classical least squares method, the measurements of A are assumed to be free of error. Hence, ...

متن کامل

Riemannian Sparse Coding for Positive Definite Matrices

Inspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extende...

متن کامل

Determinantal inequalities for positive definite matrices

Let Ai , i = 1, . . . ,m , be positive definite matrices with diagonal blocks A ( j) i , 16 j 6 k , where A ( j) 1 , . . . ,A ( j) m are of the same size for each j . We prove the inequality det( m ∑ i=1 A−1 i ) > det( m ∑ i=1 (A (1) i ) −1) · · ·det( m ∑ i=1 (A (k) i ) −1) and more determinantal inequalities related to positive definite matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2017

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2017.2649483